III B.Tech - I Semester – Regular Examinations – JANUARY 2022

FORMAL LANGUAGES AND AUTOMATA THEORY (Common to CSE & IT)

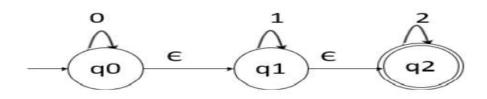
Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART – A


- 1. a) Write about the applications of Finite Automata?
 - b) Define a Regular Expression.
 - c) Define Context Free Grammar.
 - d) Define Push Down Automata.
 - e) Describe Universal Turing Machine.

PART – B UNIT – I

- a) Construct DFA which accepts Regular language of all 6 M the strings having even no of a's and b's.
 - b) Construct a DFA equivalent to NFA whose transition 6 M table is given below:

State	a	b
->q ₀	q_{0}, q_{1}	q ₂
\mathbf{q}_1	\mathbf{q}_0	\mathbf{q}_1
(final state)q ₂	-	q ₀ ,q ₁

- 3. a) Construct DFA that accepts the strings which are 6 M divisible by 3 over the alphabet {0, 1}.
 - b) Design NFA without epsilon from the given NFA with 6 M epsilon

<u>UNIT – II</u>

4.	a)	Show that the following language is regular or not by using pumping lemma $L=\{a^nb^n \mid n=0,1,2,3,\}$	6 M
	b)	Explain algebraic laws for regular expressions.	6 M
		OR	
5.	a)	Construct a ε -NFA for the Regular expression (0+1)* (00+11) (0+1)*	6 M
	b)	Explain the closure properties of Regular languages.	6 M
		<u>UNIT-III</u>	
	a)	Convert the following CFG into CNF	6 M
6.		$S \rightarrow XY \mid Xn \mid p$	
		$X \rightarrow mX \mid m$	
		$Y \rightarrow Xn \mid o$	
	b)	Describe the step-wise process to convert a CFG into	6 M
		Greibach Normal Form (GNF).	
		OD	

7. a) Consider the grammar 6 M S->aB|bA A->aS|bAA|a
B->bS|aBB|b
For the string "aaabbabbba" construct:

i) The leftmost derivation and leftmost derivation tree.
ii) The rightmost derivation and rightmost derivation tree.

b) Explain the properties of Context-free languages. 6 M

<u>UNIT – IV</u>

- 8. a) Construct a PDA for the following grammar 6 MS \rightarrow AA/a, A \rightarrow SA/b
 - b) Explain the basic structure of PDA with a suitable 6 M example.

- 9. a) Construct the CFG for the PDA, $M = (\{q_0,q_1\}, \{0,1\}, 6 M \{R,Z_0\}, \delta, q_0, Z_0, \Phi)$ and δ is given by $\delta(q_0, 1, Z_0) = (q_0, RZ_0)$ $\delta(q_0, 1, R) = (q_0, RR)$ $\delta(q_0, 0, R) = (q_1, R)$ $\delta(q_1, 0, Z_0) = (q_0, Z_0)$ $\delta(q_0, \varepsilon, Z_0) = (q_0, \varepsilon)$ $\delta(q_1, 1, R) = (q_1, \varepsilon)$
 - b) Explain the Informal and Formal definitions of 6 M Pushdown Automata in detail.

<u>UNIT – V</u>

- 10. a) Design a Turing Machine to accept $L=\{WcW^R | W \text{ is in } 6 M (a+b)^*\}$.
 - b) Show that the Halting Problem of a Turing machine is 6 M Undecidable.

- 11. a) Find whether the lists M = (ab, bab, bbaaa) and N = (a, 6 M ba, bab) have a Post Correspondence Solution?
 - b) Explain about the undecidable problems about Turing 6 M machines.