III B.Tech - I Semester - Regular Examinations - JANUARY 2022

FORMAL LANGUAGES AND AUTOMATA THEORY
 (Common to CSE \& IT)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Write about the applications of Finite Automata?
b) Define a Regular Expression.
c) Define Context Free Grammar.
d) Define Push Down Automata.
e) Describe Universal Turing Machine.

PART - B

UNIT - I
2. a) Construct DFA which accepts Regular language of all 6 M the strings having even no of a's and b's.
b) Construct a DFA equivalent to NFA whose transition 6 M table is given below:

State	a	b
$->\mathrm{q}_{0}$	$\mathrm{q}_{0}, \mathrm{q}_{1}$	q_{2}
q_{1}	q_{0}	q_{1}
(final state) q_{2}	-	$\mathrm{q}_{0}, \mathrm{q}_{1}$

OR
3. a) Construct DFA that accepts the strings which are divisible by 3 over the alphabet $\{0,1\}$.
b) Design NFA without epsilon from the given NFA with epsilon

UNIT - II

4. a) Show that the following language is regular or not by using pumping lemma $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n}=0,1,2,3, \ldots\right\}$
b) Explain algebraic laws for regular expressions.

OR
a) Construct a ε-NFA for the Regular expression $(0+1)^{*}$
5. $(00+11)(0+1)^{*}$
b) Explain the closure properties of Regular languages.

UNIT-III

a) Convert the following CFG into CNF
6.
$S \rightarrow X Y|X n| p$
$\mathrm{X} \rightarrow \mathrm{mX} \mid \mathrm{m}$
$\mathrm{Y} \rightarrow \mathrm{Xn} \mid \mathrm{o}$
b) Describe the step-wise process to convert a CFG into Greibach Normal Form (GNF).
7. a) Consider the grammar

S->aB|bA
A->aS|bAA|a
B->bS|aBB|b
For the string "aaabbabbba" construct:
i) The leftmost derivation and leftmost derivation tree.
ii) The rightmost derivation and rightmost derivation tree.
b) Explain the properties of Context-free languages.

UNIT - IV

8. a) Construct a PDA for the following grammar 6 M $\mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a}, \mathrm{A} \rightarrow \mathrm{SA} / \mathrm{b}$
b) Explain the basic structure of PDA with a suitable 6 M example.

OR

9. a) Construct the CFG for the PDA, $M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\}\right.$, 6 M $\left.\left\{\mathrm{R}, \mathrm{Z}_{0}\right\}, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \Phi\right)$ and δ is given by
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{RZ}_{0}\right)$
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{R}\right)=\left(\mathrm{q}_{0}, \mathrm{RR}\right)$
$\delta\left(\mathrm{q}_{0}, 0, \mathrm{R}\right)=\left(\mathrm{q}_{1}, \mathrm{R}\right)$
$\delta\left(\mathrm{q}_{1}, 0, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{Z}_{0}\right)$
$\delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{\mathrm{o}}\right)=\left(\mathrm{q}_{0}, \varepsilon\right)$
$\delta\left(\mathrm{q}_{1}, 1, \mathrm{R}\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
b) Explain the Informal and Formal definitions of 6 M Pushdown Automata in detail.

UNIT - V

10. a) Design a Turing Machine to accept $\mathrm{L}=\left\{\mathrm{WcW}^{\mathrm{R}} \mid \mathrm{W}\right.$ is in 6 M (a+b)*\}.
b) Show that the Halting Problem of a Turing machine is 6 M Undecidable.

OR

11. a) Find whether the lists $\mathrm{M}=(\mathrm{ab}$, bab, bbaaa $)$ and $\mathrm{N}=(\mathrm{a}, \quad 6 \mathrm{M}$ ba, bab) have a Post Correspondence Solution?
b) Explain about the undecidable problems about Turing 6 M machines.
